https://akademia-matematyki.edu.pl/ 1.Liczba 218√−32√ jest równa:2.Wartość wyrażenia −32√5⋅2−14⋅22 jest równa:3.Przy 23-procentowej stawce podatku VAT cena b
Strona głównaZadania maturalne z biologiiMatura Czerwiec 2015, Poziom rozszerzony (Formuła 2007) Kategoria: Inżynieria i badania genetyczne Typ: Zamknięte (np. testowe, prawda/fałsz) Restryktazy (enzymy restrykcyjne) – to enzymy wytwarzane przez bakterie w celu obrony przed wirusowym DNA, ale są także powszechnie wykorzystywane przez człowieka w inżynierii genetycznej. Oceń prawdziwość informacji dotyczących mechanizmu działania restryktaz i ich zastosowania w inżynierii genetycznej. Zaznacz w tabeli P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa. 1. Warunkiem przecięcia łańcucha DNA przez restryktazę jest wcześniejsze rozpoznanie określonej sekwencji nukleotydów właściwych dla danego enzymu. P F 2. Ten sam rodzaj restryktazy może rozcinać różne cząsteczki DNA na fragmenty z tępymi lub lepkimi końcami. P F 3. Restryktazy przeprowadzają także reakcje łączenia odcinków DNA wektora i DNA dawcy. P F Rozwiązanie Poprawna odpowiedź: 1 – P; 2 – F; 3 – F Za poprawną ocenę wszystkich trzech informacji – 1 pkt
http://akademia-matematyki.edu.pl/ Wykaż, że liczba (1+2013^2)(1+2013^4) jest dzielnikiem liczby:1+2013+2013^2+2013^3+2013^4+2013^5+2013^6+2013^7. Źródło:Ofi

Strona głównaZadania maturalne z chemiiMatura Czerwiec 2021, Poziom rozszerzony (Formuła 2015) Kategoria: Alkohole Typ: Zamknięte (np. testowe, prawda/fałsz) Próba jodoformowa polega na działaniu jodem w roztworze wodorotlenku sodu na badany związek organiczny. O pozytywnym wyniku eksperymentu świadczy pojawienie się żółtego osadu trijodometanu nazywanego jodoformem. Taki wynik wskazuje na obecność grupy metylowej w sąsiedztwie grupy karbonylowej w cząsteczce. Próba jodoformowa pozwala również na wykrycie obecności alkoholi o strukturze: gdzie R oznacza atom wodoru, grupę alkilową lub arylową. Jod reaguje z wodorotlenkiem sodu zgodnie z równaniem: I2 + 2NaOH → NaI + NaIO + H2O Następnie jeden z produktów tej reakcji – związek o wzorze NaIO – reaguje z alkoholem: Reakcja przebiega w trzech etapach (C – podkreślony atom węgla): Na podstawie: R. T. Morrison, R. N. Boyd, Chemia organiczna, Warszawa 1996. Spośród wymienionych niżej alkoholi wybierz wszystkie, które dają pozytywny wynik próby jodoformowej. Podkreśl nazwy wybranych związków. 2-metylopropan-2-ol pentan-2-ol pentan-3-ol 1-fenyloetanol Rozwiązanie Schemat punktowania 1 pkt – poprawny wybór dwóch alkoholi. 0 pkt – odpowiedź niespełniająca powyższego kryterium albo brak odpowiedzi. Poprawna odpowiedź 2-metylopropan-2-ol pentan-2-ol pentan-3-ol 1-fenyloetanol

http://akademia-matematyki.edu.pl/ Dane są liczby: a=log(3)1/9, b=log(3)3, c=log(3)1/27. Który z poniższych warunków jest prawdziwy? Źródło:Oficyna Edukacyjn
5 maja, 2022 8 czerwca, 2022 Zadanie 31 (0-2) Wykaż, że dla każdej liczby rzeczywistej a i każdej liczby rzeczywistej b takich, że b ≠ a spełniona jest nierówność Źródło CKE - Arkusz egzaminacyjny 2021/2022 - Matura maj ( poziom podstawowy Analiza: Poszukajmy wzoru skróconego mnożenia: Odpowiedź: Co należało udowodnić. Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią
Zadanie 2 (0-1) - matura poziom podstawowy maj 2023, zadanie 18. W kartezjańskim układzie współrzędnych (x, y) zaznaczono kąt α o wierzchołku w punkcie O= (0, 0). Jedno z ramion tego kąta pokrywa się z dodatnią półosią Ox, a drugie przechodzi przez punkt P = (−3, 1) (zobacz rysunek). Dokończ zdanie. Wybierz właściwą
Liczba 2√18−√32 jest równaChcę dostęp do Akademii! Wartość wyrażenia (5√-32⋅2^−1)/4⋅2^2 jest równa:Chcę dostęp do Akademii! Przy 23-procentowej stawce podatku VAT cena brutto samochodu jest równa 45018zł. Jaka jest cena netto tego samochodu?Chcę dostęp do Akademii! Wyrażenie 3a2−12ab+12b2 może być przekształcone do postaci:Chcę dostęp do Akademii! Para liczb x=2 i y=1 jest rozwiązaniem układu równań x+ay=5 i 2x−y=3, gdy:Chcę dostęp do Akademii! Równanie 2×2+11x+3=0:Chcę dostęp do Akademii! Wartość wyrażenia sin120°−cos30° jest równa:Chcę dostęp do Akademii! Wyrażenie 3sin3αcosα+3sinαcos3α może być przekształcone do postaci:Chcę dostęp do Akademii! Na rysunku przedstawiony jest fragment prostej o równaniu y=ax+b przechodzącej przez punkty (0,−2) i (6,2). Wtedy:Chcę dostęp do Akademii! Prosta k przecina oś Oy układu współrzędnych w punkcie (0,6) i jest równoległa do prostej o równaniu y=−3x. Wówczas prosta k przecina oś Ox układu współrzędnych w punkcie:Chcę dostęp do Akademii! Liczba niewymiernych rozwiązań równania x2(x+5)(2x−3)(x2−7)=0 jest równa:Chcę dostęp do Akademii! Na rysunku przedstawiono wykres funkcji f. Funkcja f jest rosnąca w przedziale:Chcę dostęp do Akademii! Ciąg geometryczny (an) jest określony wzorem an=2n dla n≥1. Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:Chcę dostęp do Akademii! Suma pierwszego i szóstego wyrazu pewnego ciągu arytmetycznego jest równa 13. Wynika stąd, że suma trzeciego i czwartego wyrazu tego ciągu jest równa:Chcę dostęp do Akademii! Miary kątów wewnętrznych pewnego trójkąta pozostają w stosunku 3:4:5. Najmniejszy kąt wewnętrzny tego trójkąta ma miarę:Chcę dostęp do Akademii! W trójkącie ABC, w którym |AC|=|BC|, na boku AB wybrano punkt D taki, że |BD|=|CD| oraz |∢ACD|=21° (zobacz rysunek). Wynika stąd, że kąt BCD ma miarę:Chcę dostęp do Akademii! Długości boków trójkąta są liczbami całkowitymi. Jeden bok ma 7cm, a drugi ma 2cm. Trzeci bok tego trójkąta może mieć długość:Chcę dostęp do Akademii! Boki trójkąta mają długości 20 i 12, a kąt między tymi bokami ma miarę 120°. Pole tego trójkąta jest równe:Chcę dostęp do Akademii! Tworząca stożka o promieniu podstawy 3 ma długość 6 (zobacz rysunek). Kąt α rozwarcia tego stożka jest równy:Chcę dostęp do Akademii! Graniastosłup o podstawie ośmiokąta ma dokładnie:Chcę dostęp do Akademii! W ostrosłupie czworokątnym, w którym wszystkie krawędzie mają tę samą długość, kąt nachylenia krawędzi bocznej do płaszczyzny podstawy ma miarę:Chcę dostęp do Akademii! Liczba 0,3 jest jednym z przybliżeń liczby 5/ dostęp do Akademii! Średnia arytmetyczna zestawu danych: 2,4,7,8,x jest równa n, natomiast średnia arytmetyczna zestawu danych: 2,4,7,8,x,2x jest równa 2n. Wynika stąd, że:Chcę dostęp do Akademii! Ile jest wszystkich liczb naturalnych dwucyfrowych podzielnych przez 6 i niepodzielnych przez 9?Chcę dostęp do Akademii! Na loterię przygotowano pulę 100 losów, w tym 4 wygrywające. Po wylosowaniu pewnej liczby losów, wśród których był dokładnie jeden wygrywający, szansa na wygraną była taka sama jak przed rozpoczęciem loterii. Stąd wynika, że wylosowano:Chcę dostęp do Akademii! Rozwiąż nierówność 3×2−9x≤x− dostęp do Akademii! Rozwiąż równanie x(x2−2x+3)=0Chcę dostęp do Akademii! Czworokąt ABCD wpisano w okrąg tak, że bok AB jest średnicą tego okręgu (zobacz rysunek). Udowodnij, że |AD|2+|BD|2=|BC|2+|AC| dostęp do Akademii! Udowodnij, że dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność 3×2+5y2−4xy≥ dostęp do Akademii! Funkcja kwadratowa f, dla x=−3 przyjmuje wartość największą równą 4. Do wykresu funkcji f należy punkt A=(−1,3). Zapisz wzór funkcji kwadratowej dostęp do Akademii! Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że otrzymamy liczbę podzielną przez 8 lub liczbę podzielną przez dostęp do Akademii! Dany jest nieskończony rosnący ciąg arytmetyczny (an), dla n≥1 taki, że a5=18. Wyrazy a1, a3 oraz a13 tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem pewnego ciągu geometrycznego. Wyznacz wzór na n-ty wyraz ciągu (an).Chcę dostęp do Akademii! Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Ponadto wiadomo, że A=(−2,4) i B=(6,−2). Wierzchołek C należy do osi Oy. Oblicz współrzędne wierzchołka dostęp do Akademii! Objętość ostrosłupa prawidłowego trójkątnego ABCS jest równa 273–√. Długość krawędzi AB podstawy ostrosłupa jest równa 6 (zobacz rysunek). Oblicz pole powierzchni całkowitej tego dostęp do Akademii!

W ROKU SZKOLNYM 2014/2015 FORMUŁA OD 2015 („NOWA MATURA”) ARKUSZ MMA-R1 CZERWIEC 2015 Więcej arkuszy znajdziesz na stronie: arkusze.pl. 2 31 4 4 7 11 34 35

Jeśli a=3/2 i b=2, to wartość wyrażenia a⋅b/(a+b) jest równaChcę dostęp do Akademii! Dany jest prostokąt o wymiarach 40 cm×100 cm. Jeżeli każdy z dłuższych boków tego prostokąta wydłużymy o 20%, a każdy z krótszych boków skrócimy o 20%, to w wyniku obu przekształceń pole tego prostokątaChcę dostęp do Akademii! Liczba 9^5⋅5^9/45^5 jest równaChcę dostęp do Akademii! Liczba √9/7+√7/9 jest równaChcę dostęp do Akademii! Wartość wyrażenia log(5)0,04−12log(25)1 jest równaChcę dostęp do Akademii! Wartość wyrażenia (a+5)2 jest większa od wartości wyrażenia (a2+10a) oChcę dostęp do Akademii! Na jednym z poniższych rysunków przedstawiono interpretację geometryczną układu równań x+3y=−5 i 3x−2y=−4 Wskaż ten dostęp do Akademii! Najmniejszą liczbą całkowitą spełniającą nierówność 2(x−2)≤4(x−1)+1 jestChcę dostęp do Akademii! Rozwiązaniem równania x2(x+1)=x2−8 jestChcę dostęp do Akademii! określona wzorem f(x)=(2x−8)/x dla każdej liczby rzeczywistej x≠0. Wówczas wartość funkcji f(√2) jest równaChcę dostęp do Akademii! Parabola o wierzchołku W=(−3,5) i ramionach skierowanych w dół może być wykresem funkcji określonej wzoremChcę dostęp do Akademii! Wykres funkcji liniowej y=2x−3 przecina oś Oy w punkcie o współrzędnychChcę dostęp do Akademii! Wierzchołek paraboli będącej wykresem funkcji kwadratowej y=f(x) ma współrzędne (2,2). Wówczas wierzchołek paraboli będącej wykresem funkcji g(x)=f(x+2) ma współrzędneChcę dostęp do Akademii! Wszystkie dwucyfrowe liczby naturalne podzielne przez 7 tworzą rosnący ciąg arytmetyczny. Dwunastym wyrazem tego ciągu jest liczbaChcę dostęp do Akademii! Ciąg liczbowy określony jest wzorem an=(2^n−1)/(2^n+1), dla n≥1. Piąty wyraz tego ciągu jest równyChcę dostęp do Akademii! Sinus kąta ostrego α jest równy 3/4. WówczasChcę dostęp do Akademii! W trójkącie prostokątnym o długościach przyprostokątnych 2 i 5 cosinus większego z kątów ostrych jest równyChcę dostęp do Akademii! Pole rombu o boku 6 i kącie rozwartym 150∘ jest równeChcę dostęp do Akademii! W okręgu o środku O dany jest kąt o mierze 50∘, zaznaczony na rysunku. Miara kąta oznaczonego na rysunku literą α jest równaChcę dostęp do Akademii! Współczynnik kierunkowy prostej, na której leżą punkty A=(−4,3) oraz B=(8,7), jest równyChcę dostęp do Akademii! Punkt S=(2,−5) jest środkiem odcinka AB, gdzie A=(−4,3) i B=(8,b). WtedyChcę dostęp do Akademii! Dany jest trójkąt prostokątny o długościach boków a,b,c, gdzie aChcę dostęp do Akademii! Przekątna przekroju osiowego walca, którego promień podstawy jest równy 4 i wysokość jest równa 6, ma długośćChcę dostęp do Akademii! W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę z tej grupy. Prawdopodobieństwo tego, że będzie to kobieta, jest równeChcę dostęp do Akademii! Ile jest wszystkich liczb czterocyfrowych, większych od 3000, utworzonych wyłącznie z cyfr 1,2,3, przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?Chcę dostęp do Akademii! Rozwiąż równanie (2x−4)/x=x/(2x−4), gdzie x≠0 i x≠ dostęp do Akademii! Mamy dwa pudełka: w pierwszym znajduje się 6 kul ponumerowanych kolejnymi liczbami od 1 do 6, a w drugim – 8 kul ponumerowanych kolejnymi liczbami od 1 do 8. Losujemy po jednej kuli z każdego pudełka i tworzymy liczbę dwucyfrową w ten sposób, że numer kuli wylosowanej z pierwszego pudełka jest cyfrą dziesiątek, a numer kuli wylosowanej z drugiego – cyfrą jedności tej liczby. Oblicz prawdopodobieństwo, że utworzona liczba jest podzielna przez dostęp do Akademii! Rozwiąż nierówność 20x≥4×2+ dostęp do Akademii! Kąt α jest ostry i spełnia równość tgα+1/tgα=7/2. Oblicz wartość wyrażenia sinα⋅ dostęp do Akademii! Wykaż, że dla wszystkich nieujemnych liczb rzeczywistych x, y prawdziwa jest nierówność x3+y3≥x2y+xy2Chcę dostęp do Akademii! W prostokącie ABCD punkt P jest środkiem boku BC, a punkt R jest środkiem boku CD. Wykaż, że pole trójkąta APR jest równe sumie pól trójkątów ADR oraz dostęp do Akademii! Wyznacz równanie osi symetrii trójkąta o wierzchołkach A=(−2,2), B=(6,−2), C=(10,6)Chcę dostęp do Akademii! Podstawą ostrosłupa ABCDS jest prostokąt, którego boki pozostają w stosunku 3:4, a pole jest równe 192 (zobacz rysunek). Punkt E jest wyznaczony przez przecinające się przekątne podstawy, a odcinek SE jest wysokością ostrosłupa. Każda krawędź boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 30∘. Oblicz objętość dostęp do Akademii! Funkcja kwadratowa f określona jest wzorem f(x)=ax^2+bx+c. Zbiorem rozwiązań nierówności f(x)>0 jest przedział (0,12). Największa wartość funkcji f jest równa 9. Oblicz współczynniki a, b i c funkcji dostęp do Akademii!

Matura Czerwiec 2015, Poziom Rozszerzony (Arkusze CKE), Formuła od 2015 - Zadanie 30. (1 pkt) Zadania zamknięte - zaznacz, wybierz (abcd, P/F, podkreślenie itd.) Do kolby kulistej wprowadzono 2 mole pewnego ciekłego estru R 1 COOR 2, 2 mole wody i 1 mol bezwodnego ciekłego kwasu karboksylowego R 1 COOH. Naczynie zamknięto korkiem z
Matura czerwiec 2017 zadanie 31 ZgWCQ3P.
  • 8k34ujuhl2.pages.dev/272
  • 8k34ujuhl2.pages.dev/85
  • 8k34ujuhl2.pages.dev/54
  • 8k34ujuhl2.pages.dev/392
  • 8k34ujuhl2.pages.dev/276
  • 8k34ujuhl2.pages.dev/159
  • 8k34ujuhl2.pages.dev/264
  • 8k34ujuhl2.pages.dev/288
  • 8k34ujuhl2.pages.dev/248
  • matura czerwiec 2015 zad 31